Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Electrophoresis ; 37(5-6): 711-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26718015

ABSTRACT

Electrophoretic mobilities of amyloid-beta (1-40) and (1-42) peptides and their aggregates are modeled to study the amyloidogenic pathway associated with Alzheimer´s Disease. The near molecule pH generated by the intraparticle charge regulation phenomenon during the oligomerization of amyloid-beta (1-40) and (1-42) peptides is evaluated and discussed as a relevant mechanism supporting the "amyloid cascade hypothesis" proposed in the literature. A theoretical framework associated with the oligomerization of amyloid-beta peptides including simple scaling laws and the consideration of electrokinetic and hydrodynamic global properties of oligomers is presented. The central finding is the explanation of the near molecule pH change toward the pI when the oligomerization number increases. These results allow one to rationalize consecutive physical stages that validate the amyloid cascade hypothesis. Concluding remarks involving mainly the effects of pair and intraparticle charge regulation phenomena on the amyloidogenic pathway with some suggestions for future research are provided.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Electrophoresis, Capillary/methods , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Computer Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Polymerization
2.
Electrophoresis ; 36(5): 805-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25403948

ABSTRACT

Neuronal activity loss may be due to toxicity caused mainly by amyloid-beta (1-40) and (1-42) peptides forming soluble oligomers. Here the amyloid-beta (12-28) peptide fragment (monomer) and its dimer are characterized at low pH through the modeling of their diffusion coefficients and effective electrophoretic mobilities. Translational diffusion coefficient experimental values of monomer and dimer analogs of this peptide fragment and monomer and dimer mixtures at thermodynamic equilibrium are used as reported in the literature for different monomer initial concentrations. The resulting electrokinetic and hydrodynamic global properties are employed to evaluate the amyloid-beta (12-28) peptide fragment propensity to dimerization through a thermodynamic theoretical framework. Therefore equilibrium constants are considered at pH 2.9 to elucidate one of the amyloidogenic mechanisms involving the central hydrophobic region LVFFA of the peptide spanning residues 17-21 associated with phenylalanine at positions 19 and 20 in the amino acid sequence of amyloid-beta peptides. An analysis demonstrating that peptide aggregation is a concentration-dependent process is provided, where both pair and intraparticle charge regulation phenomena become relevant. It is shown that the modeling of the effective electrophoretic mobility of the amyloid-beta (12-28) peptide fragment is crucial to understand the effect of hydrophobic region LVFFA in the amyloidogenic process.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Amino Acid Sequence , Diffusion , Electrophoresis/methods , Hydrodynamics , Models, Chemical , Molecular Sequence Data , Protein Multimerization , Thermodynamics
3.
J Sep Sci ; 37(18): 2618-24, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24975363

ABSTRACT

Neuronal activity loss may be due to toxicity caused by amyloid-beta peptides forming soluble oligomers. Here amyloid-beta peptides (1-42, 1-40, 1-39, 1-38, and 1-37) are characterized through the modeling of their experimental effective electrophoretic mobilities determined by a capillary zone electrophoresis method as reported in the literature. The resulting electrokinetic and hydrodynamic global properties are used to evaluate amyloid-beta peptide propensities to aggregation through pair particles interaction potentials and Brownian aggregation kinetic theories. Two background electrolytes are considered at 25°C, one for pH 9 and ionic strength I = 40 mM (aggregation is inhibited through NH4OH) the other for pH 10 and I = 100 mM (without NH4OH). Physical explanations of peptide oligomerization mechanisms are provided. The effect of hydration, electrostatic, and dispersion forces in the amyloidogenic process of amyloid-beta peptides (1-40 and 1-42) are quantitatively presented. The interplay among effective charge number, hydration, and conformation of chains is described. It is shown that amyloid-beta peptides (1-40 and 1-42) at pH 10, I = 100 mM and 25°C, may form soluble oligomers, mainly of order 2 and 4, after an incubation of 48 h, which at higher times evolve and end up in complex structures (protofibrils and fibrils) found in plaques associated with Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/chemistry , Electrochemical Techniques , Hydrodynamics , Models, Chemical , Protein Aggregates , Protein Aggregation, Pathological , Electrophoresis, Capillary , Hydrogen-Ion Concentration , Kinetics , Static Electricity
4.
Electrophoresis ; 35(5): 755-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24293200

ABSTRACT

Several global chain properties of relatively long peptides composed of 20 amino acid residues are estimated through the modeling of their experimental effective electrophoretic mobilities determined by CZE for 2 < pH < 6. In this regard, an all l-α-eicosapeptide, including a secondary α-helix (Peptide 1) and its all retro d-inverso-α-eicosapeptide (Peptide 2), are considered. Despite Peptides 1 and 2 are isomeric chains, they do not present similar global conformations in the whole range of pH studied. These peptides may also differ in the quality of BGE components chain interactions depending on the pH value. Three Peptide 1 fragments (Peptides 3, 4, and 5) are also analyzed in this framework with the following purposes: (i) visualization of the effects of initial and final strands at each side of the α-helix on the global chain conformations of Peptide 1 at different pHs and (ii) analysis of global chain conformations of Peptides 1 and 2, and Peptide 1 fragments in relation to their pI values. Also, the peptide maximum and minimum hydrations predicted by the model, compatible with experimental effective electrophoretic mobilities at different pHs, are quantified and discussed, and needs for further research concerning chain hydration are proposed. It is shown that CZE is a useful analytical tool for peptidomimetic designs and purposes.


Subject(s)
Electrophoresis, Capillary/methods , Models, Chemical , Pancreatic Polypeptide/chemistry , Peptide Fragments/chemistry , Peptides/chemistry , Amino Acid Sequence , Isomerism , Molecular Sequence Data , Pancreatic Polypeptide/analysis , Peptide Fragments/analysis , Protein Conformation
5.
Electrophoresis ; 34(18): 2648-54, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712447

ABSTRACT

This work analyzes and discusses several physicochemical peptide chain properties that may generate partial or total BGE slip boundary conditions on the surface of peptides migrating as spherical and aspherical particles in CZE. A definition of the BGE slip length is presented that is able to account the effect of particle curvature through the associated metrical coefficients. This definition allows the distinction between partial and total BGE slip lengths. It is also shown that the BGE slip length must be variable on orthotropic aspherical particles surfaces.


Subject(s)
Electrolytes/chemistry , Electrophoresis, Capillary/methods , Models, Chemical , Peptides/chemistry , Computer Simulation , Friction , Hydrodynamics , Hydrophobic and Hydrophilic Interactions
6.
Electrophoresis ; 34(5): 708-15, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23172316

ABSTRACT

This work explores the possibility of using the electrically charged "spherical soft particle" (SSP) to model the electrophoretic mobility of proteins in the low charge regime. The general framework concerning the electrophoretic mobility of the SSP already presented in the literature is analyzed and discussed here in particular for polyampholyte-polypeptide chains. In this regard, this theory is applied to BSA for different protocol pH values. The physicochemical conditions required to model proteins as SSP from their experimentally determined electrophoretic mobilities are established. In particular, the protein charge regulation phenomenon and the SSP particle core are included to study BSA having isoelectric point pI ≈ 5.71, within a wide range of bulk pH values. The results of this case study are compared with previous ones concerning the spherical porous particle and the spherical hard particle with occluded water. A discussion of chain conformations in the SSP polyampholyte layer is presented through estimations of the packing and friction fractal dimensions.


Subject(s)
Electrophoresis/methods , Micrococcal Nuclease/chemistry , Models, Theoretical , Serum Albumin, Bovine/chemistry , Ampholyte Mixtures/chemistry , Animals , Cattle , Friction , Hydrodynamics , Isoelectric Point , Permeability , Protein Conformation
7.
Electrophoresis ; 34(5): 700-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23172546

ABSTRACT

This work explores the possibility of using the electrically charged "spherical porous particle" (SPP) to model the electrophoretic mobility of proteins in the low charge regime. In this regard, the electrophoretic mobility expression of the charged SPP (Hermans-Fujita model) is used and applied here to BSA and staphylococcal nuclease for different protocol pH values. The SPP is presented within the general framework of the "spherical soft particle" as described in the literature. The physicochemical conditions required to model proteins as SPP from their experimentally determined electrophoretic mobilities are established. It is shown that particle permeability and porosity and chain packing and friction fractal dimensions are relevant structural properties of proteins when hydrodynamic interaction between amino acid residues is present. The charge regulation phenomenon of BSA and staphylococcal nuclease with pIs ≈ 5.71 and 9.63, respectively, is described through the SPP within a wide range of bulk pH values. These case studies illustrate when the average regulating {pH} of the protein domain is lower and higher than the protocol pH. Further research for using the general spherical soft particle is also proposed on the basis of results and main conclusions.


Subject(s)
Electrophoresis/methods , Micrococcal Nuclease/chemistry , Models, Theoretical , Serum Albumin, Bovine/chemistry , Animals , Cattle , Computer Simulation , Hydrodynamics , Hydrogen-Ion Concentration , Permeability , Porosity
8.
Electrophoresis ; 33(6): 990-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22528418

ABSTRACT

The present work is motivated specifically by the need to find a simple interplay between experimental values of electrophoretic mobility and intrinsic viscosity (IV) of polypeptides. The connection between these two properties, as they are evaluated experimentally in a formulated dilute solution, may provide relevant information concerning the physicochemical characterization and separation of electrically charged chains such as polypeptides. Based on this aspect, a study on the relation between the effective electrophoretic mobility and the IV of the following globular proteins is carried out: bovine carbonic anhydrase, staphylococcal nuclease, human carbonic anhydrase, lysozyme, human serum albumin. The basic interpretation of the IV through polypeptide chain conformations involves two unknowns: one is the Flory characteristic ratio involving short-range intramolecular interactions and the other is the Mark-Houwink exponent associated with large-range intramolecular interactions. Here, it will be shown via basic and well-established electrokinetic theories and scaling concepts that the IV and global chain flexibility of polypeptides in dilute solutions may be estimated from capillary zone electrophoresis, in addition to classical transport properties. The polypeptide local chain flexibility may change due to electrostatic interactions among closer chain ionizing groups and the hindrance effect of their associated structural water.


Subject(s)
Electrophoresis, Capillary/methods , Peptides/chemistry , Animals , Cattle , Humans , Models, Theoretical , Proteins/chemistry , Static Electricity , Viscosity , Water/chemistry
9.
Electrophoresis ; 32(20): 2779-87, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21948196

ABSTRACT

Estimations of protein global conformations in well-specified physicochemical microenvironments are obtained through global structural parameters defined from polypeptide-scale analyses. For this purpose protein electrophoretic mobility data must be interpreted through a physicochemical CZE model to obtain estimates of protein equivalent hydrodynamic radius, effective and total charge numbers, hydration, actual ionizing pK and pH-near molecule. The electrical permittivity of protein domain is also required. In this framework, the solvent drag on proteins is obtained via the characteristic friction power coefficient associated with the number of amino acid residues defining the global chain conformation in solution. Also, the packing dimension related to the spatial distribution of amino acid residues within the protein domain is evaluated and discussed. These scaling coefficients together with the effective and total charge number fractions of proteins provide relevant interpretations of protein global conformations mainly from collapsed globule to hybrid chain regimes. Also, protein transport properties may be estimated within this framework. In this regard, the central role played by the friction power coefficient in the evaluation of these properties is highlighted.


Subject(s)
Electrophoresis, Capillary/methods , Proteins/chemistry , Animals , Carbonic Anhydrases/chemistry , Cattle , Friction , Humans , Hydrogen-Ion Concentration , Micrococcal Nuclease/chemistry , Models, Molecular , Protein Conformation
10.
J Sep Sci ; 33(16): 2423-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20506428

ABSTRACT

Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.


Subject(s)
Models, Chemical , Peptides/chemistry , Biological Transport , Electrophoresis, Capillary , Hydrogen-Ion Concentration , Particle Size , Peptides/isolation & purification , Protein Conformation
11.
Electrophoresis ; 30(13): 2328-36, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19569126

ABSTRACT

Electrophoretic mobility data of four proteins are analyzed and interpreted through a physicochemical CZE model, which provides estimates of quantities like equivalent hydrodynamic radius (size), effective charge number, shape orientation factor, hydration, actual pK values of ionizing groups, and pH near molecule, among others. Protein friction coefficients are simulated through the creeping flow theory of prolate spheroidal particles. The modeling of the effective electrophoretic mobility of proteins requires consideration of hydrodynamic size and shape coupled to hydration and effective charge. The model proposed predicts native protein hydration within the range of values obtained experimentally from other techniques. Therefore, this model provides consistently other physicochemical properties such as average friction and diffusion coefficients and packing fractal dimension. As the pH varies from native conditions to those that are denaturing the protein, hydration and packing fractal dimension change substantially. Needs for further research are also discussed and proposed.


Subject(s)
Electrophoresis, Capillary/methods , Models, Chemical , Proteins/chemistry , Water/chemistry , Algorithms , Chemical Phenomena , Hydrogen-Ion Concentration , Osmolar Concentration , Protein Conformation
12.
J Sep Sci ; 31(3): 548-54, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18266265

ABSTRACT

A CZE model is presented for peptide characterization on the basis of well-established physicochemical equations. The effective mobility is used as basic data in the model to estimate relevant peptide properties such as, for instance, hydration, net and total electrical charge numbers, hydrodynamic size and shape, particle average orientation, and pH-microenvironment from the charge regulation phenomenon. Therefore 102 experimental effective mobilities of different peptides are studied and discussed in relation to previous work. An equation for the estimation of peptide hydration as a function of ionizing, polar, and non-polar amino acid residues is included in the model. It is also shown that the shape-orientation factor of peptides may be either lower or higher than one, and its value depends on a complex interplay among total charge number, molar mass, hydration, and amino acid sequence.


Subject(s)
Electrophoresis, Capillary/methods , Peptides/analysis , Amino Acid Sequence , Hydrogen-Ion Concentration , Models, Chemical , Molecular Weight , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Ultraviolet/methods , Water/chemistry
13.
Electrophoresis ; 28(20): 3658-73, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17941132

ABSTRACT

Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.


Subject(s)
Algorithms , Amino Acids/chemistry , Electrophoresis, Capillary/methods , Models, Chemical , Thermodynamics , Electrophoresis, Capillary/instrumentation , Hydrogen-Ion Concentration , Models, Molecular , Stereoisomerism , Water
14.
Electrophoresis ; 28(13): 2223-34, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17539037

ABSTRACT

Experimental mobilities obtained from CZE are used to study protein denaturation through a model based on known physicochemical theories. This model is able to provide additional information concerning the folded and unfolded protein states from mobility data. Its use comprises first the evaluation of relevant parameters of the protein microstates like the electrostatic free energy, apart from the classical conformational free energy, and second the expression of raw experimental data concerning the folding-unfolding transition into more specific physicochemical parameters like protein hydrodynamic radius, net charge number, and hydration. Spurious effects that are intrinsic to the experimental evaluation of the mobility of protein states, like BGE viscosity, pH, and ionic strength variations accompanying the changes of the denaturant agent intensity are eliminated. In order to illustrate the proposal of this work, two case studies are considered here. The first one concerns thermal and urea denaturations of horse heart ferricytochrome c and the second one involves thermal denaturation of hen egg-white lysozyme. Thus, relevant theoretical thermodynamic considerations of the folded-unfolded protein transition are presented, where the electrostatic free energy is included explicitly in the effective free energy. It is found that this transition involves sharp increases of hydrodynamic radius and protein hydration.


Subject(s)
Electrophoresis, Capillary/methods , Protein Denaturation/physiology , Animals , Chickens , Cytochromes c/chemistry , Horses , Models, Theoretical , Ovalbumin/chemistry , Protein Conformation , Protein Folding , Thermodynamics
15.
Electrophoresis ; 27(23): 4631-47, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17136715

ABSTRACT

This work explores the validity of simple CZE models to analyze the electrophoretic mobilities of 102 peptides reported in literature. These models are based mainly on fundamental physicochemical theories providing analytical expressions amenable to relatively simple numerical analysis. Thus, the Linderstrøm-Lang capillary electrophoresis model (LLCEM) and its perturbed version (PLLCEM), proposed and applied previously to the CZE of globular proteins, are adapted and used here for peptides. Also the effects of pK-shifts on net charge, hydration and hydrodynamic size and shape of peptides are analyzed and discussed. Emphasis is placed on the fact that these parameters are physically coupled, and thus a variation in the net charge may produce an appreciable change in the hydrodynamic size of peptides. Within the framework of CZE, peptides may be assumed as having a hydrodynamic volume associated with either spherical or spheroidal particles. The effects on peptide net charge and hydrodynamic size, of electrostatic interaction between a pair of charged groups in the chain and electrical permitivitty around the peptide domain are studied. The predictions of the PLLCEM and LLCEM are in good agreement with results reported previously in the literature. Several limitations concerning these models and some needs for further research are also described.


Subject(s)
Electrophoresis, Capillary , Models, Chemical , Peptides/chemistry , Amino Acid Sequence , Molecular Sequence Data , Protein Conformation , Water/chemistry
16.
Electrophoresis ; 26(17): 3232-46, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16097025

ABSTRACT

Two physicochemical models are proposed for the estimation of both hydrodynamic radius and net charge of a protein when the capillary zone electrophoretic mobility at a given protocol, the set of pK of charged amino acids, and basic data from Protein Data Bank are available. These models also provide a rationale to interpret appropriately the effects of solvent properties on protein hydrodynamic radius and net charge. To illustrate the numerical predictions of these models, experimental data of electrophoretic mobility available in the literature for well-defined protocols are used. Five proteins are considered: lysozyme, staphylococcal nuclease, human carbonic anhydrase, bovine carbonic anhydrase, and human serum albumin. Numerical predictions of protein net charges through these models compare well with the results reported in the literature, including those found asymptotically through protein charge ladder techniques. Model calculations indicate that the hydrodynamic radius is sensitive to changes of the protein net charge and hence it cannot be assumed constant in general. Also, several limitations associated with models for estimating protein net charge and hydrodynamic radius from protein structure, amino acid sequence, and experimental electrophoretic mobility are provided and discussed. These conclusions also show clear requirements for further research.


Subject(s)
Electrolytes/chemistry , Electrophoresis, Capillary/methods , Proteins/chemistry , Models, Chemical
17.
Electrophoresis ; 24(10): 1587-95, 2003 May.
Article in English | MEDLINE | ID: mdl-12761788

ABSTRACT

A theoretical relation between the zeta potential of silica capillaries and the composition of the background electrolyte (BGE) is presented in order to be used in capillary zone electrophoresis (CZE). This relation is derived on the basis of the Poisson-Boltzmann equation and considering the equilibrium dissociation of silanol groups at the capillary wall as the mechanism of charge generation. The resulting model involves the relevant physicochemical parameters of the BGE-capillary interface. Special attention is paid to the characterization of the BGE, which can be either salt or/and buffer solutions. The model is successfully applied to electroosmotic flow (EOF) experimental data of different aqueous solutions, covering a wide range of pH and ionic strength. Numerical predictions are also presented showing the capability of the model to quantify the EOF, the control of which is relevant to improve analyte separation performance in CZE.


Subject(s)
Electrolytes/chemistry , Electrophoresis, Capillary/methods , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration
18.
Medicina (B.Aires) ; 59(6): 693-7, 1999.
Article in Spanish | LILACS | ID: lil-253523

ABSTRACT

Los marcadores serológicos comúnmente utilizados en el diagnóstico de la enfermedad celíaca son los anticuerpos antigliadina (AG) y antiendomisio (AE). Recientemente (1997) se identificó a la transglutaminasa de tejido (tTG) como el principal autoantígeno de los anticuerpos AE. El objetivo de este trabajo fue determinar la sensibilidad y especificidad de testes de ELISA desarrollados en base a la utilización de estructuras moleculares definidas como antígenos de captura para los anticuerpos AG y AE. Como antígenos inmovilizados para los anticuerpos AG se ensayaron tres péptidos de sínteses correspondientes a la región amino terminal de la alfa gliadina y para los AE, la transglutaminasa de hígado de cobayo. Se examinaron un total de 80 sueros correspondientes a: pacientes celíacos, no tratados y tratados, controles enfermos no celíacos y controles sanos. Rango de edad: 7 meses a 14 años. Se obtuvo una sensibilidad del 97 por ciento y una especificidad 86 por ciento para la IgG determinada utilizando como antígeno uno de los tres péptidos de síntesis (correspondiente a los residuos 31-55 de la alfa gliadina). Este péptido aparece como un antígeno altamente sensible y más específico que la gliadina. El mejor resultado, con un 100 por ciento de especificidad y sensibilidad, se obtuvo en la determinación de la IgA anti-tTG, lo que destaca la relevancia de estos anticuerpos como marcadores serológicos de la enfermedad celíaca.


Subject(s)
Child, Preschool , Child , Infant , Adolescent , Humans , Male , Female , Antibodies/blood , Antigens/blood , Celiac Disease/diagnosis , Gliadin/immunology , Peptides/immunology , Transglutaminases/immunology , Biomarkers , Celiac Disease/enzymology , Enzyme-Linked Immunosorbent Assay , Gliadin/biosynthesis , Immunoglobulin A/blood , Immunoglobulin G/blood , Sensitivity and Specificity , Serologic Tests
19.
Medicina [B.Aires] ; 59(6): 693-7, 1999.
Article in Spanish | BINACIS | ID: bin-13663

ABSTRACT

Los marcadores serológicos comúnmente utilizados en el diagnóstico de la enfermedad celíaca son los anticuerpos antigliadina (AG) y antiendomisio (AE). Recientemente (1997) se identificó a la transglutaminasa de tejido (tTG) como el principal autoantígeno de los anticuerpos AE. El objetivo de este trabajo fue determinar la sensibilidad y especificidad de testes de ELISA desarrollados en base a la utilización de estructuras moleculares definidas como antígenos de captura para los anticuerpos AG y AE. Como antígenos inmovilizados para los anticuerpos AG se ensayaron tres péptidos de sínteses correspondientes a la región amino terminal de la alfa gliadina y para los AE, la transglutaminasa de hígado de cobayo. Se examinaron un total de 80 sueros correspondientes a: pacientes celíacos, no tratados y tratados, controles enfermos no celíacos y controles sanos. Rango de edad: 7 meses a 14 años. Se obtuvo una sensibilidad del 97 por ciento y una especificidad 86 por ciento para la IgG determinada utilizando como antígeno uno de los tres péptidos de síntesis (correspondiente a los residuos 31-55 de la alfa gliadina). Este péptido aparece como un antígeno altamente sensible y más específico que la gliadina. El mejor resultado, con un 100 por ciento de especificidad y sensibilidad, se obtuvo en la determinación de la IgA anti-tTG, lo que destaca la relevancia de estos anticuerpos como marcadores serológicos de la enfermedad celíaca. (AU)


Subject(s)
Child, Preschool , Child , Infant , Adolescent , Humans , Male , Female , Celiac Disease/diagnosis , Transglutaminases/immunology , Antibodies/blood , Gliadin/immunology , Antigens/blood , Peptides/immunology , Biomarkers , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay , Immunoglobulin A/blood , Immunoglobulin G/blood , Gliadin/biosynthesis , Serologic Tests , Celiac Disease/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...